Monday, May 20, 2013

Makalah Termokimia


BAB I
PENDAHULUAN

I.1. Latar Belakang
Dalam makalah ini, kami mengambil tema mengenai Termokimia. Kami memilih tema ini karena kami rasa materi ini sangat penting untuk dipelajari. Termokimia merupakan salah satu materi dasar dalam kimia yang harus dikuasai.
Di dalam makalah ini kami membahas tentang konsep dasar dari termokimia yang kami sajikan pada bagian awal dari isi makalah. Hal ini kami lakukan karena kami menilai untuk memahami suatu materi, kita harus mengetahui konsep dasar terlebih dahulu, kemudian dilanjutkan pada bagian inti materi.
Termokimia merupakan materi yang harus dipahami dengan baik karena di dalamnya mencakup cukup banyak materi lainnya, seperti Reaksi endoterm, Hukum dalam termokimia, Energi ikatan, dan arah proses. Maka dari itu, kami berusaha untuk membuat materi termokimia dalam makalah ini menjadi ringkas dan mudah dipahami.

I.2. Tujuan Penulisan
1.  Untuk mempelajari konsep dasar termokimia
2.  Untuk mempelajari materi-materi yang terkait dengan termokimia
3.  Memahami tentang termokimia lebih mendalam
I.3. Metode Penulisan
Dalam menulis makalah ini, kami memperoleh kajian materi dari beberapa sumber, yaitu studi literatur dari buku-buku yang terkait dengan topik dan berbagai artikel dari internet.







Daftar Isi
Halaman
I.     Pendahuluan …………………………………………………………………………    1
I.1.         Latar belakang…………………………………………………………….   1
I.2.         Tujuan penulisan …………………………………………………………    1
I.3.         Metode penulisan ………………………………………………………...    1
I.4.         Sistematika penulisan ……………………………………………………     2
II.  Isi
II.1.     Konsep Dasar …………………………………………………………….    3
II.2.     Reaksi endoterm …………………………………………………………    3
II.3.     Hukum dalam termokimia …………………………………………………   4
II.4.     Energi ikatan ……………………………………………………………………..     6
II.5.     Arah proses ……………………………………………………………………    8
III. Penutup ……………………………………………………………………………...    9
III.1.  Kesimpulan ………………………………………………………………    9
III.2.  Saran ……………………………………………………………………..   
Daftar pustaka …………………………………………………………………………...    10














BAB II
ISI

II.1. Konsep Dasar
Termokimia adalah ilmu yang mempelajari hubungan antara energi panas dan energi kimia. Sedangkan energi kimia didefinisikan sebagai energi yang dikandung setiap unsur atau senyawa. Energi kimia yang terkandung dalam suatu zat adalah semacam energi potensial zat tersebut. Energi potensial kimia yang terkandung dalam suatu zat disebut panas dalam atau entalpi dan dinyatakan dengan simbol H. Selisih antara entalpi reaktan dan entalpi hasil pada suatu reaksi disebut perubahan entalpi reaksi. Perubahan entalpi reaksi diberi simbol ΔH.
Bagian dari ilmu kimia yang mempelajari perubahan kalor atau panas suatu zat yang menyertai suatu reaksi atau proses kimia dan fisika disebut termokimia. Secara operasional termokimia berkaitan dengan pengukuran dan pernafsiran perubahan kalor yang menyertai reaksi kimia, perubahan keadaan, dan pembentukan larutan.
Termokimia merupakan pengetahuan dasar yang perlu diberikan atau yang dapat diperoleh dari reaksi-reaksi kimia, tetapi juga perlu sebagai pengetahuan dasar untuk pengkajian teori ikatan kimia dan struktur kimia. Fokus bahasan dalam termokimia adalah tentang jumlah kalor yang dapat dihasilkan oleh sejumlah tertentu pereaksi serta cara pengukuran kalor reaksi.
Termokimia merupakan penerapan hukum pertama termodinamika terhadap peristiwa kimia yang membahas tentang kalor yang menyertai reaksi kimia.

II.2. Reaksi Eksoterm dan Reaksi Endoterm
Berdasarkan perpindahan energinya atau perubahan entalpinya ada dua jenis reaksi:
1)        Reaksi eksoterm yaitu reaksi yang membebaskan kalor, kalor mengalir dari sistem ke lingkungan (terjadi penurunan entalpi), entalpi produk lebih kecil daripada entalpi pereaksi. Oleh karena itu, perubahan entalpinya bertanda negatif.  Pada reaksi eksoterm umumnya suhu sistem menjadi naik, adanya kenaikan suhu inilah yang menyebabkan sistem melepas kalor ke lingkungan.
Reaksi eksoterm: DH = HP - HR < 0 atau DH = (-)
2)        Reaksi Endoterm yaitu reaksi yang memerlukan kalor, kalor mengalir dari lingkungan ke sistem (terjadi kenaikan entalpi), entalpi produk lebih besar daripada entalpi pereaksi. Oleh karena itu, perubahan entalpinya bertanda positif. Pada reaksi endoterm umumnya suhu sistem terjadi penurunan, adanya penurunan suhu inilah yang menyebabkan sistem menyerap kalor dari lingkungan.
Reaksi endoterm: DH = HP - HR > 0 atau DH = (+)

II.3.    Hukum dalam termokimia
Dalam mempelajari reaksi kimia dan energi kita perlu memahami hukum-hukum yang mendasari tentang perubahan dan energi.
Hukum kekekalan energi
Dalam perubahan kimia atau fisika energi tidak dapat diciptakan atau dimusnahkan, energi hanya dapat diubah dari satu bentuk ke bentu lainnya. Hukum ini merupakan hukum termodinamika pertama dan menjadi dasar pengembangan hukum tentang energi selanjutnya, seperti konversi energi.

Hukum Laplace
Hukum ini diajukan oleh Marquis de Laplace dan dia menyatakan bahwa jumlah kalor yang dilepaskan dalam pembentukan sebuah senyawa dari unsur-unsurnya sama dengan jumlah kalor yang dibutuhkan untuk menguraikan senyawa tersebut menjadi unsur-unsurnya.

Panjabaran dari hukum ini untuk entalphi reaksi ΔH dan kalor reaksi;
C + O2 → CO2 ΔH = -94 Kkal
CO2 → C + O2 ΔH = +94 Kkal
Sedangkan untuk kalor reaksi,
C + O2 → CO2 -94 Kkal
CO2 → C + O2 +94 Kkal
Untuk reaksi pertama, unsur C bereaksi dengan gas oksigen menghasilkan karbondioksida dan kalor sebesar 94 Kkal. Sedangkan reaksi kedua karbondioksida terurai menjadi unsur C dan gas oksigen dengan membutuhkan kalor sebesar 94 Kkal.
Dari sisi tanda, tampak jelas perbedaan antara entalphi reaksi dengan kalor reaksi, jika entalphi bernilai positif maka kalor reaksi bernilai negatif, demikian pula sebaliknya jika entalphi negatif maka kalor reaksi positif.
Hukum Hess
Hukum ini diajukan oleh Germain Hess, dia menyatakan bahwa entalphi reaksi (ΔH) hanya tergantung pada keadaan awal reaksi dan hasil reaksi dan tidak bergantung pada jalannya reaksi.

artikel 49
Jika suatu reaksi merupakan penjumlahan aljabar dari dua atau lebih reaksi, maka perubahan entalphi (ΔH) atau kalor reaksinya juga merupakan penjumlahan aljabar dari (ΔH) yang menyertai reaksi. Untuk lebih mudah memahaminya kita perhatikan Bagan 10.17.
bagan 10.17
Bagan 10.17. Penjumlahan aljabar reaksi dan entalphi menurut Germain Hess
Berdasarkan persamaan reaksi gas karbon dioksida dapat terbentuk melalui dua tahap, yang pertama pembentukan karbonmonoksida dari unsur-unsurnya dan dilanjutkan dengan oksidasi dari karbonmonoksida menjadi karbondioksida.
Penjumlahan aljabar ΔHreaksi dari setiap tahap reaksi juga dilakukan sesuai dengan tahap reaksi, maka ΔHreaksi dari pembentukan gas Karbon dioksida juga dapat dilakukan.
Berdasarkan berbagai jenis reaksi, maka kita juga dapat mengembangkan jenis kalor reaksi atau ΔH yang disesuaikan dengan jenis reaksinya, ada empat jenis kalor reaksi yaitu kalor reaksi pembentukan, penguraian, pembakaran dan pelarutan. Keempat klasifikasi tersebut disederhanakan dalam bagan pada Bagan 10.18.


II.4.        Energi ikatan
Pada dasarnya reaksi kimia terdiri dari dua proses, yaitu pemutusan ikatan antar atom-atom dari senyawa yang bereaksi (proses yang memerlukan energi) dan penggabungan ikatan kembali dari atom-atom yang terlibat reaksi sehingga membentuk susunan baru (proses yang membebaskan energi).  

Perubahan entalpi reaksi dapat dihitung dengan menggunakan data energi ikatan. Energi ikatan adalah energi yang diperlukan untuk memutuskan ikatan oleh satu molekul gas menjadi atom-atom dalam keadaan gas. Harga energi ikatan selalu positif, dengan satuan kJ atau kkal, serta diukur pada kondisi zat-zat berwujud gas.  

Entalpi reaksi yang dihitung berdasarkan harga energi ikatan rata-rata sering berbeda dari entalpi reaksi yang dihitung berdasarkan harga entalpi pembentukan standar. Perbedaan ini terjadi karena energi ikatan yang terdapat dalam suatu tabel adalah energi ikatan rata-rata. Energi ikatan C – H dalam contoh di atas bukan ikatan C – H dalam CH4, melainkan energi ikatan rata-rata C – H. 
CH4(g) CH3(g) + H(g) H = +424 kJ/mol
CH3(g) CH2(g) + H(g) H = +480 kJ/mol
CH2(g) CH(g) + H(g) H = +425 kJ/mol
CH(g) C(g) + H(g) H = +335 kJ/mol
Jadi, energi ikatan rata-rata dari ikatan C – H adalah 416 kJ/mol. Sedangkan energi
ikatan C – H yang dipakai di atas adalah +413 kJ/mol.

Bahan Bakar dan Perubahan Entalpi Reaksi pembakaran adalah reaksi suatu zat dengan oksigen. Biasanya reaksi semacam ini digunakan untuk menghasilkan energi. Bahan bakar adalah merupakan suatu senyawa yang bila dilakukan pembakaran terhadapnya dihasilkan kalor yang dapat dimanfaatkan untuk berbagai keperluan. 

Jenis bahan bakar yang banyak kita kenal adalah bahan bakar fosil. Bahan bakar fosil berasal dari pelapukan sisa organisme, baik tumbuhan maupun hewan yang memerlukan waktu ribuan sampai jutaan tahun, contohnya minyak bumi dan batu bara. 

Namun selain bahan bakar fosil dewasa ini telah dikembangkan pula bahan bakar jenis lain, misalnya alkohol dan hidrogen. Hidrogen cair dengan oksigen cair bersama-sama telah digunakan pada pesawat ulang-alik sebagai bahan bakar roket pendorongnya. Pembakaran hidrogen tidak memberi dampak negatif pada lingkungan karena hasil pembakarannya adalah air.  

Matahari adalah umber energi terbesar di bumi, tetapi penggunaan energi surya belum komersial. Dewasa ini penggunaan energi surya yang komersial adalah untuk pemanas air rumah tangga (solar water heater).  Nilai kalor dari bahan bakar umumnya dinyatakan dalam satuan kJ/gram, yang menyatakan berapa kJ kalor yang dapat dihasilkan dari pembakaran 1 gram bahan bakar tersebut. 

Contoh : nilai kalor bahan bakar bensin adalah 48 kJ/g, artinya setiap pembakaran sempurna 1 gram bensin akan dihasilkan kalor sebesar 48 kJ.  Pembakaran bahan bakar dalam mesin kendaraan atau dalam industri umumnya tidak terbakar sempurna. Pembakaran sempurna senyawa hidrokarbon (bahan bakar fosil) membentuk karbon dioksida dan uap air. 

Sedangkan pembakaran tidak sempurnanya menghasilkan karbon monoksida dan uap air.  Pembakaran tak sempurna mengurangi efisiensi bahan bakar, kalor yang dihasilkan akan lebih sedikit dibandingkan apabila zat itu terbakar sempurna. Kerugian lainnya adalah dihasilkannya gas karbon monoksida (CO) yang bersifat racun


bagan 10.18


II.5.    Arah proses
Berdasar kespontanannya, suatu proses reaksi dapat di bagi menjadi dua. Yaitu:
1.    Proses spotan
Proses spotan adalah satu proses yang berlangsung satu arah system di lingkungan tidak berada dalam ke setimbangan.
Contoh:
·         Air mengalir dari tempat yang tinggi ke tempat yang rendah.
·         Spirtus kebakar
2.    Proses tidak spotan
Proses tidak spotan adalah suatu proses yang dapat berlangsung karena adanya pengaruh dari luar system. System dan lingkungan selalu berada dalam keadaan kesetimbangan.
Contoh:
·         Air membeku
·         Memperoleh alumunium dari oksidanya
Suatu reaksi kimia berlangsung spotan atau tidak spotan dapat ditentukan dengan melihat 3 fungsi keadaan yaitu:
Ø  Entalpi (H)
Reaksi spotan H < 0 dan tidak spotan bila H > 0
Ø  Entropi (S)
Entropi adalah derajat ketidakaturan system.
Reaksi spotan S > 0 dan tidak spotan bila S < 0
Ø  Energi bebas (G)
Perubahan energy bebas (G) adalah jumlah energy maksimum dalam suatu proses yang berlangsung pada suhu dan tekanan tetap yang tidak digunakan untuk menghasilka kerja. Oleh karena itu reaksi spotan G < 0 dan tidak spotan bila G > 0

G =                       T = Suhu dalam derajat Kelvin
BAB III
PENUTUP

III.1.    Kesimpulan
Singkatnya, materi pembelajaran pada termokimia ini merupakan materi dasar yang wajib untuk dipelajari dan dipahami secara mendalam. Materi yang secara umum mencakup Reaksi endoterm, Hukum dalam termokimia, Energi ikatan, dan arah proses merupakan materi-materi dasar dalam pelajaran kimia yang berguna untuk mempelajari materi selanjutnya yang tentu saja lebih rumit. Dalam makalah ini materi duraikan secara singkat agar para pembaca lebih mudah memahaminya.

III.2.    Saran
Dengan adanya makalah sederhana ini, penyusun mengharapkan agar para pembaca dapat memahami materi termokimia ini dengan mudah. Saran dari penyusun agar para pembaca dapat menguasai materi singkat dalam makalah ini dengan baik, kemudian dilanjutkan dengan pelatihan soal sesuai materi yang berhubungan agar semakin menguasai materi.














DAFTAR PUSTAKA

Brady, James .E. 1999. Kimia Universitas Azas & Struktur Jilid 1, Edisi ke-5. Jakarta : Binarupa      Aksara
Kleinfelter, Wood. 1989.Kimia Untuk Universitas Jilid 1.ed.6.Jakarta : Erlangga
Rahayu,Nurhayati,dan Jodhi Pramuji G.2009.Rangkuman Kimia SMA.Jakarta : Gagas Media
Sutresna,Nana. 2007.Cerdas Belajar Kimia untuk Kelas XI.Jakarta : Grafindo Media Pratama
Kuliah Kimia Dasar I oleh Pak Umar
Dogra, SK. 1990. Kimia Fisik dan Soal-Soal. Jakarta: Universitas Indonesia
Denbigh, Kenneth. 1980. Prinsip-Prinsip Keseimbangan Kimia edisi ke-empat. Jakarta: Universitas Indonesia
free.vlsm.org/v12/sponsor/.../0281%20Fis-1-4d.htm
http://blog.ums.ac.id/vitasari/files/2009/06/kuliah-11_panas-reaksi.pdf
http://elearning.gunadarma.ac.id/docmodul/pengantar_kimia/Bab_8
http://id.wikipedia.org/wiki/Hukum_Hess
http://id.wikipedia.org/wiki/Kalorimeter\
http://www.scribd.com/doc/20100823/Kalorimeter
http://www.chem-is-try.org/materi_kimia/kimia_fisika1/termokimia/pengertian-termokimia/
http://elearning.uin-suka.ac.id/attachment/hukum_i_termo_sh8y0_11975.ppt
http://mesin.brawijaya.ac.id/diktat_ajar/data/02_c_bab1n2_termo1.pdf
http://ocw.gunadarma.ac.id/course/diploma-three-program/study-program-of-computer-engineering-d3/fisika-dasar-2/termokimia
Wijayanti. 2009. Penentuan Entalpi Reaksi. Kamis, 10 Desember. http://kimia-asyik.blogspot.com/2009/12/penentuan-entalpi-reaksi.html
http://www.kimiaku.info/termokimia.pdf